
EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING

PARADIGMS ON SPARSE MATRIX COMPUTATIONS

LEONID OLIKER

y

, XIAOYE LI

y

, PARRY HUSBANDS

y

, AND RUPAK BISWAS

z

Abstract. The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative tech-

nique to solve sparse linear systems that are symmetric and positive de�nite. For systems that are

ill-conditioned, it is often necessary to use a preconditioning technique. In this paper, we investi-

gate the e�ects of various ordering and partitioning strategies on the performance of parallel CG and

ILU(0) preconditioned CG (PCG) using di�erent programming paradigms and architectures. Results

show that for this class of applications, ordering signi�cantly improves overall performance on both

distributed and distributed shared-memory systems, that cache reuse may be more important than

reducing communication, that it is possible to achieve message-passing performance using shared-

memory constructs through careful data ordering and distribution, and that a hybrid MPI+OpenMP

paradigm increases programming complexity with little performance gains. However, a multithreaded

implementation of CG on the Tera MTA does not require special ordering or partitioning to obtain

high e�ciency and scalability, giving it a distinct advantage for adaptive applications even though it

shows limited scalability for PCG due to a lack of thread level parallelism.

Key words. preconditioned conjugate gradient, graph partitioning, reverse Cuthill-McKee, self-

avoiding walks, message passing, shared-memory directives, hybrid programming, multithreading

AMS subject classi�cations. Need to �ll these in

1. Introduction. The ability of computers to solve hitherto intractable prob-

lems and simulate complex processes using mathematical models makes them an in-

dispensable part of modern science and engineering. Computer simulations of large-

scale realistic applications usually require solving a set of non-linear partial di�erential

equations (PDEs) over a �nite region, subject to certain initial and boundary condi-

tions. Structured grids are the most natural way to discretize such a computational

domain since they are characterized by a uniform connectivity pattern. Unfortu-

nately, complicated domains must often be divided into multiple structured grids to

be completely discretized, requiring a great deal of human intervention. Unstructured

meshes, by contrast, can be generated automatically for applications with complex

geometries or those with dynamically moving boundaries (but at the cost of higher

memory requirements to explicitly store the connectivity information for every point

in the mesh).

The process of obtaining numerical solutions to the governing PDEs requires solv-

ing large sparse linear systems or eigensystems de�ned over the unstructured meshes

that model the underlying physical objects. The Conjugate Gradient (CG) algorithm

is perhaps the best-known iterative technique to solve sparse linear systems that are

symmetric and positive de�nite. The CG algorithm is often used with a precondi-

tioner for systems that are ill-conditioned. Within each iteration of preconditioned

CG (PCG), the sparse matrix vector multiply (SPMV) and the inverse of the precon-

ditioning matrix are usually the most expensive operations.

Using a standard �xed mesh, it may be time-consuming or even impossible for

a simulation to resolve �ne-scale features. E�ciency can be signi�cantly improved

y

NERSC, Mail Stop 50F, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(floliker,xsli,pjrhusbandsg@lbl.gov). Supported by Director, O�ce of Computational and Tech-

nology Research, Division of Mathematical, Information, and Computational Sciences of the U.S.

Department of Energy under contract number DE-AC03-76SF00098.

z

NASA Ames Research Center, Mail Stop T27A-1, Mo�ett Field, CA 94035-1000

(rbiswas@nas.nasa.gov).

1



2 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

by locally re�ning and coarsening the mesh to capture the phenomena of interest.

Brie
y, the existing grid is modi�ed by inserting new points in regions that require

more resolution and removing points from regions where less resolution is acceptable.

Unstructured grids, by their very nature, facilitate this kind of local dynamic mesh

adaptation to e�ciently solve problems with evolving physical features such as shock

waves, vortices, detonations, shear layers, and crack propagation.

On uniprocessor machines, numerical solutions of such complex, real-life prob-

lems can be extremely time consuming, a fact driving the development of increas-

ingly powerful parallel multiprocessor supercomputers. The unstructured, dynamic

nature of many systems worth simulating, however, makes their e�cient parallel im-

plementation a daunting task. This is primarily due to the load imbalance created

by the dynamically changing nonuniform grids and the irregular data access pat-

terns [15, 16, 22]. These cause signi�cant communication at runtime, leaving many

processors idle and adversely a�ecting the total execution time.

Furthermore, modern computer architectures, based on deep memory hierarchies,

show acceptable performance only if users care about the proper distribution and

placement of their data [2, 14]. Single-processor performance crucially depends on the

exploitation of locality, and parallel performance degrades signi�cantly if inadequate

partitioning of data causes excessive communication and/or data migration. The

traditional approach would be to use a sophisticated partitioning algorithm, and then

to post-process the resulting partitions with an enumeration strategy for enhanced

locality. Although, in that sense, optimizations for partitioning and locality may

be treated as separate problems, real applications tend to show a rather intricate

interplay of both.

In this paper, we investigate the e�ects of various ordering and partitioning strate-

gies on the performance of CG and SPMV using di�erent programming paradigms and

architectures. In particular, we use the reverse Cuthill-McKee [4] and the self-avoiding

walks [8] ordering strategies, and the METIS [13] graph partitioner. We examine par-

allel implementations of CG and PCG using MPI, shared-memory compiler directives,

hybrid programming (MPI+OpenMP) and �ne-grained multithreading, on four state-

of-the-art parallel supercomputers: a Cray T3E, an SGI Origin2000, an IBM SP3, and

a Cray (Tera) MTA. Results show that for this class of applications, ordering signif-

icantly improves overall performance, that cache reuse may be more important than

reducing communication, that it is possible to achieve message-passing performance

using shared-memory constructs through careful data ordering and distribution, and

that the hybrid paradigm increases programming complexity with little performance

gains. However, the multithreaded implementation of CG does not require special

ordering or partitioning to obtain high e�ciency and scalability, giving it a distinct

advantage for adaptive applications even though it showed limited scalability for PCG

due to a lack of thread level parallelism.

The remainder of the paper is organized as follows. In x2, we give a brief overview

of CG and ILU(0) preconditioning. The partitioning and ordering strategies are de-

scribed in x3. In x4, we describe the various parallel machines and the corresponding

programming paradigms used for our experiments. Detailed performance results are

presented in x5. Finally, x6 concludes the paper with a summary and some observa-

tions.

2. Sparse matrix computations. A discretization of PDEs typically leads to

large sparse matrices, which are commonly de�ned as matrices that have very few

nonzero entries. Special sparse matrix solution techniques can be used whenever the



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 3

zero elements need not be stored. Direct solution methods were traditionally preferred

because of their robustness and predictable nature. However, iterative algorithms are

now becoming quite popular.

The earliest iterative methods used a relaxation technique where the components

of the approximation were systematically modi�ed until convergence. This class con-

sists of Jacobi, Gauss-Seidel, and the Alternating Direction Implicit (ADI) algorithms.

A second group of iterative techniques uses a projection process, which is a canonical

way of extracting an approximate solution from a subspace. The steepest descent

and minimal residual schemes belong to this class. However, iterative techniques that

use Krylov subspaces are currently considered to be among the most important for

solving large sparse matrices. The Conjugate Gradient (CG) algorithm is perhaps

the best-known in this class. Although theoretically robust, CG can su�er from slow

convergence for ill-conditioned matrices. It is therefore common to use a precon-

ditioning technique with CG. In the following subsections, we brie
y describe the

preconditioned CG algorithm and the ILU preconditioner.

2.1. Conjugate gradient. The Conjugate Gradient (CG) algorithm is the old-

est and best-known Krylov subspace method used to solve the sparse symmetric pos-

itive de�nite linear system Ax = b. The method starts from an initial guess x

0

of the

vector x. It then successively generates approximate solutions in the Krylov subspace,

and search directions used in updating the approximate solution and residual.

The convergence rate of CG depends on the spectral condition number of the

coe�cient matrix A. For ill-conditioned linear systems, it is often necessary to use

a preconditioning technique. In other words, the original system is transformed into

another that has the same solution, but with better spectral properties. For instance,

if matrix M approximates A in some sense, then M

�1

Ax = M

�1

b would have bet-

ter condition number. The preconditioned CG (PCG) algorithm [20] is outlined in

Fig. 2.1.

For an initial guess x

0

, compute r

0

= b�Ax

0

, p

0

= z

0

= M

�1

r

0

for j = 0; 1; : : :, until convergence

�

j

= (r

j

; z

j

)=(Ap

j

; p

j

)

x

j+1

= x

j

+ �

j

p

j

r

j+1

= r

j

� �

j

Ap

j

z

j+1

=M

�1

r

j+1

�

j

= (r

j+1

; z

j+1

)=(r

j

; z

j

)

p

j+1

= z

j+1

+ �

j

p

j

endfor

Fig. 2.1. The preconditioned Conjugate Gradient algorithm.

Each iteration of PCG involves one sparse matrix-vector product (SPMV) for Ap

j

,

one solve with preconditioner M , three vector updates (AXPY) for x

j+1

, r

j+1

, and

p

j+1

, and three inner products (DOT) for the update scalars �

j

and �

j

which make

the generated sequences satisfy certain orthogonality conditions. For a symmetric

positive de�nite linear system, these conditions imply that the distance between the

approximate solution and the true solution is minimized.

For most practical matrices, the SPMV and solve with M

�1

dominate the other

operations. This is demonstrated by the results given in x5. Suppose A is of order n

and has nnz nonzeros. Then, one SPMV involves O(nnz) 
oating-point operations,



4 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

while AXPY and DOT require only O(n) 
oating-point operations. The only require-

ment for M is that it be easy to invert; however, matrix inversion is still signi�cantly

more expensive than vector updates and inner products. Note that both AXPY and

DOT are insensitive to mesh orderings.

2.2. ILU preconditioning. A preconditioner is any kind of modi�cation to

the original sparse linear system which makes it easier to solve. One broad class of

e�ective preconditioners is based on incomplete factorizations of the matrix A. That

is, the preconditioner M is given in the factored form M = LU , with L and U being

lower and upper triangular matrices. Since some �ll elements are suppressed during

the factorization process, M is called an ILU preconditioner. Solving with M involves

two triangular solutions. In this paper, we consider the simplest form of incomplete

factorization, called ILU(0), where all the �ll elements not at the nonzero positions of

A are discarded. Compared with the other ILU variants, ILU(0) is computationally

fast and memory e�cient. It is quite e�ective for a reasonable number of practical

matrices.

The ILU(0) method contains two steps. First, an incomplete LU factorization of

A must be created. This is formally done as shown in Fig. 2.2. This factorization is

performed only once, hence its cost can be amortized.

for k = 1; n� 1

for each i; j > k

if a

ij

6= 0 then a

ij

= a

ij

� a

ik

a

�1

kk

a

kj

endfor

Fig. 2.2. The incomplete LU factorization of A.

Second, the lower and upper triangular solves with L and U must be performed in

each PCG iteration. The triangular solves incur about the same number of operations

as the SPMV Ax, because the sparsity patterns of L and U are identical to the lower

and upper triangular parts of A. However, a parallel triangular solve tends to be

slower than a parallel SPMV, because it has a smaller degree of parallelism. For

SPMV, all the components can be obtained independently in parallel. This is not

true for a triangular solve. Figure 2.3 illustrates the lower triangular solve Lx = b.

The solution of x

i

depends on all x

j

, j < i, unless l

ij

= 0. Thus there are more

task dependencies than SPMV, even if L is very sparse. The task dependency graphs

change with the matrix ordering; hence, di�erent orderings have di�erent degrees of

parallelism. In x5, we evaluate the performance of PCG on several architectures, using

various ordering strategies.

x = b

for j = 1; n

x

j

= x

j

=l

jj

for each i > j and l

ij

6= 0

x

i

= x

i

� l

ij

x

j

endfor

Fig. 2.3. The lower triangular solve.



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 5

2.3. Sparse matrix-vector multiplication. The basic sparse matrix-vector

product (SPMV) is one of the most heavily-used kernels in large-scale numerical

simulations, particularly in iterative solution schemes for sparse linear systems. As

explained above, it also dominates the operation count in PCG. To perform the SPMV

Ax, we assume that the nonzeros of matrix A are stored in the Compressed Row

Storage (CRS) format [1]. The dense vector x is stored sequentially in memory with

unit stride. Various numberings of the mesh elements/vertices result in di�erent

nonzero patterns of A which, in turn, cause di�erent access patterns for the entries

of x. Moreover, on a distributed-memory machine, they imply di�erent amounts of

communication.

3. Partitioning and linearization. Almost all state-of-the-art computer ar-

chitectures utilize some degree of memory hierarchy (registers, cache, main memory)

that implies data locality is crucial. With graph partitioning, data locality is enforced

by minimizing interprocessor communication, but not at the cache level. However,

graph partitioners are indispensable on distributed-memory machines, but can be

quite useful even on shared-memory architectures. In this paper, we have used the

METIS [13] multilevel partitioner for our experiments.

Serialization techniques play an important role in enhancing cache performance.

Over the years, special numbering strategies (e.g., Cuthill-McKee [4], Fiduccia-Matt-

heyses [5]) have been developed to optimize memory usage and locality of sparse

matrix computations. In addition, the runtime support for decomposing adaptive

structured grids is often based on a linear representation of the grid hierarchy in

the form of a space-�lling curve (SFC). SFCs have been demonstrated to be an el-

egant and uni�ed linearization approach for certain problems in N-body and �nite

element method (FEM) simulations, mesh partitioning, and other graph-related ar-

eas [7, 17, 18, 19, 21]. For our experiments, we pursued both these strategies with

some modi�cations as described below.

3.1. METIS graph partitioning. Some excellent parallel graph partitioning

algorithms have been developed and implemented in the last decade that are extremely

fast while giving good load balance quality and low edge cuts. Perhaps the most pop-

ular is METIS [13] that belongs to the class of multilevel partitioners. METIS reduces

the size of the graph by collapsing vertices and edges using a heavy edge matching

scheme, applies a greedy graph growing algorithm for partitioning the coarsest graph,

and then uncoarsens it back using a combination of boundary greedy and Kernighan-

Lin re�nement to construct a partitioning for the original graph. Partitioners strive

to balance the computational workload among processors while reducing interproces-

sor communication. Improving cache performance is not a typical objective of most

partitioning algorithms.

3.2. RCM ordering. The particular enumeration of the vertices in an FEM

discretization controls, to a large extent, the sparseness pattern of the resulting sti�-

ness matrix. The bandwidth, or pro�le, of the matrix has a signi�cant impact on

the e�ciency of linear systems and eigensolvers. Cuthill and McKee [4] suggested a

simple algorithm based on ideas from graph theory. Starting from a vertex of mini-

mal degree, levels of increasing distance from that vertex are �rst constructed. The

enumeration is then performed level-by-level with increasing vertex degree (within

each level). Several variations of this method have been suggested, the most popular

being reverse Cuthill-McKee (RCM) [6] where the level construction is restarted from

a vertex of minimal degree in the �nal level. In many cases, it has been shown that



6 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

RCM improves the pro�le of the resulting matrix. The class of CM algorithms are

fairly straightforward to implement and largely bene�t by operating on a pure graph

structure, i.e., the underlying graph is not necessarily derived from a triangular mesh.

3.3. SAW ordering. The general idea of a space-�lling curve (SFC) is to lin-

earize points/elements in a higher-dimensional space. This mapping onto a one-

dimensional structure is exploited in two ways: First, the locality preserving nature

of the construction �ts elegantly into a given memory hierarchy, and second, the par-

titioning of a contiguous linear object is trivial. For unstructured meshes, an SFC

introduces an arti�cial structure in that the construction depends on the embedding,

ignoring the combinatorial skeleton of the mesh which drives the formulation of op-

erators between �nite element spaces. To overcome this drawback, a novel approach,

called a self-avoiding walk (SAW) [8], has recently been proposed. SAW uses a mesh-

based (as opposed to geometry-based) technique with similar application areas as

SFCs.

A SAW over a triangular mesh is an enumeration of all the triangles such that two

consecutive triangles (in the SAW) share an edge or a vertex, i.e., there are no jumps

in the SAW. In other words, a SAW visits each triangle exactly once, entering it over

an edge or a vertex, and exiting over another edge or vertex. When a SAW jumps

over vertices, it indicates that the triangles following one another in the enumeration

do not share an edge. It is important to note that a SAW is not a Hamiltonian

path; however, Hamiltonicity of the dual graph implies the existence of a SAW that

goes only over edges [8]. Figure 3.1 shows an example of a SAW over a 36-element

triangular mesh.

Fig. 3.1. An example of a self-avoiding walk (SAW) over a 36-element triangular mesh.

It can be shown that walks with more specialized properties exist over arbitrary

unstructured meshes, and that there is an algorithm for their construction whose

complexity is linear in the number of triangles in the mesh. Furthermore, SAWs are

amenable to hierarchical coarsening and re�nement, i.e., they have to be rebuilt only

in regions where mesh adaptation occurs, and can therefore be easily parallelized.

SAW, unlike RCM, is not a technique designed speci�cally for vertex enumeration;

thus, it cannot operate on the bare graph structure of a triangular mesh. This implies

a higher construction cost for SAWs, but several di�erent vertex enumerations can be

derived from a given SAW.

4. Programming paradigms. Recently, four di�erent parallel architectures

have emerged, each with its own set of programming paradigms. This work investi-

gates the performance and the programming e�ort for the Conjugate Gradient (CG)

iterative solver for sparse matrices on each of these architectural platforms under their



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 7

corresponding programming approaches: message passing, shared-memory directives,

hybrid programming, and multithreading. We give below a brief description of these

parallel machines and their programming paradigms.

4.1. Message passing. Parallel programming with message passing is the most

common and mature approach for high-performance parallel systems. On distributed-

memory architectures, each processor has its own local memory that only it can

directly access. To access the memory of another processor, a copy of the desired

data must be explicitly sent across the network using a message-passing library such

as MPI. To run a code on such machines, the programmer must decide how the data

should be distributed among the local memories, communicated between processors

during the course of the computation, and reshu�ed when necessary. This model

causes increased code complexity, especially for irregularly structured applications;

however, the bene�ts lie in enhanced performance for coarse-grained communication

and implicit synchronization through blocking communication.

The message-passing experiments in this paper were performed on the distributed-

memory architecture of the 640-node Cray T3E, located in the NERSC division of

Lawrence Berkeley National Laboratory. Each T3E node consists of a 450 MHz DEC

Alpha processor (900 M
ops peak theoretical 
oating-point speed), 256 MB of main

memory, a 96 KB secondary cache, and is interconnected to other nodes through a

three-dimensional torus.

4.2. Shared memory. Using a shared-memory system can greatly simplify the

programming task compared to message-passing implementations. In distributed

shared-memory architectures, each processor has a local memory but also has di-

rect access to all the memory in the system. Parallel programs are relatively easy to

implement since each processor has a global view of the entire memory. Parallelism

can be easily achieved by inserting compiler directives into the code to distribute

loop iterations among the processors. However, portability may be diminished, and

performance may su�er from poor spatial locality of physically distributed shared

data.

The shared-memory codes presented here were implemented on the 64-node SGI

Origin2000, located in the NAS division of NASA Ames Research Center. Each node

of the Origin2000 is a symmetric multiprocessor (SMP) containing two 250 MHz MIPS

R10000 processors and 512 MB of local memory. The hardware makes all memory

equally accessible from a software standpoint, by sending memory requests through

routers located on the nodes. Access time to memory is nonuniform, depending on

how far away the memory lies from the processor. The topology of the interconnec-

tion network is a hypercube, bounding the maximum number of memory hops to a

logarithmic function of the number of processors. Each processor also has a relatively

large 4 MB secondary cache, where only it can fetch and store data. If a processor

refers to data that is not in cache, there is a delay while a copy of the data is fetched

from memory. When a processor modi�es a word of data, all other copies of the cache

line containing that word are invalidated.

4.3. Hybrid programming. The latest technological advances have allowed

increasing numbers of processors to have access to a single memory space in a cost

e�ective manner. As a result, the latest tera
ops-scale parallel architectures contain

a larger number of networked SMPs. Pure MPI codes should port easily to these

systems, since message passing is required among the SMP nodes. However, it is not

obvious that message passing within each SMP is the most e�ective use of the sys-



8 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

tem. A recently proposed programming paradigm combines two layers of parallelism,

by implementing OpenMP shared-memory codes within each SMP, while using MPI

among the SMP clusters. This mixed programming strategy allows codes to poten-

tially bene�t from loop-level parallelism in addition to coarse-grained domain-level

parallelism. Although the hybrid programming methodology may be the best map-

ping to the underlying architecture, it remains unclear whether the performance gains

of this approach compensate for the increased programming complexity and the loss

of portability.

The hybrid architecture used in our experiments is the IBM SP3 system, recently

installed at the San Diego Supercomputing Center (SDSC). The machine contains

1,152 processors arranged as 144 SMP compute nodes. Each node is equipped with

4 GB of memory shared among its eight 222 MHz Power3 processors, and connected

via a crossbar. The crossbar technology reduces bandwidth contention to main mem-

ory, compared to traditional shared-bus designs. Each Power3 CPU has an L1 (64 KB)

cache which is 128-way set associative, and L2 (4 MB) cache which is four-way set

associative with its own private cache bus. All the nodes are connected to each other

via a switch interconnect using an omega-type topology. Currently, only four MPI

tasks (out of the eight processors) are available within each SMP when using this

fast switch. Thus, under the current con�guration, the user is required to implement

mixed mode programs to utilize all the processors. The next generation switch will

alleviate this problem.

Hybrid programming may o�er an advantage in systems where the MPI library

is unoptimized due to software issues (such as a poorly implemented communication

layer within an SMP) or hardware limitations (such as the current con�guration of

SP3's switch at SDSC). Hybrid codes may also bene�t from application which are

well-suited to take advantage of shared-memory algorithms.

4.4. Multithreading. Multithreading has received considerable attention over

the years as a promising way to hide memory latency in high-performance computers,

while providing access to a large and uniform shared memory. Using multithreading

to build commercial parallel computers is a new concept in contrast to the standard

single-threaded microprocessors of traditional supercomputers. Such machines can

potentially utilize substantially more of its processing power by tolerating memory

latency and using low-level synchronization directives. Cray (formally Tera) has de-

signed and built a state-of-the-art multithreaded computer called the MTA, which is

especially well-suited for irregular and dynamic applications. Parallel programmabil-

ity is considerably simpli�ed since the user has a global view of the memory, and need

not be concerned with the data layout.

The Cray MTA is a supercomputer installed about two years ago at SDSC. The

MTA has a radically di�erent architecture than current high-performance computer

systems. Each 255 MHz processor has support for 128 hardware streams, where each

stream includes a program counter and a set of 32 registers. One program thread

can be assigned to each stream. The processor switches with no overhead among the

active streams at every clock tick even if a thread is not blocked, while executing a

pipelined instruction.

The uniform shared memory of the MTA is 
at, and physically distributed across

hundreds of banks that are connected through a three-dimensional toroidal network to

the processors. All memory addresses are hashed by the hardware so that apparently

adjacent words are actually distributed across di�erent memory banks. Because of the

hashing scheme, it is impossible for the programmer to control data placement. This



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 9

enhances programmability compared to standard cache-based multiprocessor systems.

Rather than using data caches to hide latency, the MTA processors use multithreading

to tolerate latency. If a thread is waiting for its memory reference to complete, the

processor executes instructions from other threads. Performance thus depends on

having a large number of concurrent computation threads.

Lightweight synchronization among the threads is provided by the memory itself.

Each word of physical memory contains a full-empty bit, which enables fast syn-

chronization via load and store instructions without operating system intervention.

Synchronization among threads may stall one of the threads, but not the processor on

which the threads are running, since each processor may run many threads. Explicit

load balancing across loops is also not required since the dynamic scheduling of work

to threads provides the ability of keeping the processors saturated, even if di�erent

iterations require varying amounts of time to complete. Once a code has been writ-

ten in the multithreaded model, no additional work is required to run it on multiple

processors, since there is no di�erence between uni- and multiprocessor parallelism.

5. Experimental results. Our experimental test mesh consists of a two-dimen-

sional Delaunay triangulation, generated by the Triangle [23] software package. The

mesh is shaped like the letter \A", and contains 661,054 vertices and 1,313,099 trian-

gles. The underlying matrix is assembled by assigning a random value in (0; 1) to each

(i; j) entry corresponding to the vertex pair (v

i

; v

j

), where 1 � distance(v

i

; v

j

) � 3.

All other o�-diagonal entries were set to zero. This simulates a stencil computation

where each vertex needs to communicate with its neighbors that are no more than

three edge lengths away. The matrix is symmetric with its diagonal entries set to 40,

which makes it diagonally dominant (and hence positive de�nite). This ensures that

the CG algorithm converges successfully. The �nal sparse matrix A has approximately

39 entries per row and a total of 25,753,034 nonzeros. This sparsity is representative

of matrices obtained from discretizing PDEs on three-dimensional meshes; however,

the connectivity pattern will be di�erent for three-dimensional problems. The CG

algorithm converges in 13 iterations, with the unit vector as the right-hand side b and

the zero vector as the initial guess for x. For our test matrix, the SPMV computa-

tion accounts for approximately 87% of the total number of 
oating-point operations

within each CG iteration.

For the PCG experiments, the diagonal entries of the matrix were reduced to 10,

thus no longer making it diagonally dominant and causing the original CG to fail. The

PCG algorithm successfully converged in 10 iterations, given the modi�ed matrix.

5.1. T3E implementation. In our experiments on the Cray T3E, we use the

parallel SPMV and CG routines in Aztec [10], implemented using MPI. The matrix

A is partitioned into blocks of rows, with each block assigned to one processor. The

associated components of vectors x and b are distributed accordingly. Communication

may be needed to transfer some components of x. For example, in y  Ax, if y

i

is

updated on processor p

1

, A

ij

6= 0, and x

j

is owned by processor p

2

, then p

2

must

send x

j

to p

1

. In general, a processor may need more than one x-component from

another processor. It is thus more e�cient to combine several x-components into one

message so that each processor sends no more than one message to another processor.

This type of optimization can be performed in a pre-processing phase. The other

two operations, AXPY and DOT in the CG algorithm, are easily parallelized: AXPY

requires only local computations, whereas DOT requires a local sum followed by a

global sum reduction.

Three routines within Aztec are of particular interest to us: AZ transform,



10 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

which initializes the data structures and the communication schedule for SPMV,

AZ matvec mult, which performs the matrix-vector multiply, and AZ cg, which solves

a linear system using the CG algorithm. In Table 5.1, we report the runtimes of the

AZ matvec mult and AZ cg routines on the T3E at NERSC. It was not possible to run

our test problem on less than 8 processors of this machine due to memory constraints.

Table 5.1

Runtimes (in seconds) of AZ matvec mult (SPMV) and AZ cg (CG) using di�erent orderings

on the T3E.

ORIG METIS RCM SAW

P SPMV CG SPMV CG SPMV CG SPMV CG

8 0.562 8.652 0.476 7.662 0.381 6.185 0.171 2.916

16 0.325 5.093 0.268 2.909 0.193 3.198 0.086 1.491

32 0.199 3.167 0.087 1.468 0.095 1.662 0.044 0.795

64 0.119 1.929 0.056 0.961 0.045 0.882 0.028 0.462

Results show that for the key kernel routine AZ matvec mult, SAW is always

about twice as fast as RCM. In turn, RCM is about 1.5 times faster than METIS on

16 or fewer processors, and about the same on 32 or more processors. Note that when

using 32 or more processors, METIS is twice as fast as ORIG (the natural ordering

from Triangle). For AZ cg, SAW is again about twice as fast as RCM. However, we

do not see a clear advantage of RCM over METIS for this routine. Both RCM and

METIS are twice as fast as ORIG on large number of processors. Finally, METIS,

RCM, and SAW, all demonstrate excellent scalability (more than 75% e�ciency) up to

the 64 processors that were used for these experiments, but ORIG seems less scalable

(only about 56% e�ciency). As expected, there is a strong correlation between the

performance of CG and the underlying SPMV for all test cases.

Table 5.2 shows the pre-processing times spent in AZ transform. The times for

METIS, RCM, and SAW are comparable, and are usually an order of magnitude

larger than the corresponding times for AZ matvec mult. The AZ transform times

show some scalability up to 32 processors. However, for ORIG, the times are two to

three orders larger, and show very little scalability. Clearly, the ORIG ordering is too

ine�cient and unacceptable on distributed-memory machines.

Table 5.2

Runtimes (in seconds) of AZ transform using di�erent orderings on the T3E.

P ORIG METIS RCM SAW

8 504.2 2.829 2.370 2.023

16 547.9 1.455 1.330 1.157

32 333.7 0.840 0.864 0.804

64 150.0 0.422 0.776 0.537

The message-passing PCG experiments in this paper use the BlockSolve95 [12]

software library, which is used for solving large, sparse linear systems on parallel plat-

forms that support message-passing with MPI. Although Aztec is a powerful iterative

library, it does not provide a global ILU(0) factorization routine. BlockSolve95 uses

two matrix reordering schemes to achieve scalable performance. First, the graph is

reduced by extracting cliques and identical nodes (i-nodes) in the sparse matrix struc-

ture, allowing for the use of higher-level BLAS. Next, the reduced graph is colored

using an e�cient parallel coloring heuristic [11]. Finally, vertices of the same color

are grouped and ordered sequentially. As a result, during the triangular solves of the



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 11

PCG, the unknowns corresponding to these vertices can be solved for in parallel, after

the updates from previous color groups have been performed. The number of colors

in the graph therefore determines the number of parallel steps in the triangular solve.

Since BlockSolve95 reorders the input matrix, we investigate what e�ect, if any, our

ordering strategies have on the parallel performance of PCG.

Table 5.3 presents the runtimes of the triangular solve and the total PCG using

various ordering strategies. Results clearly show that the initial ordering of the matrix

plays a signi�cant role in PCG performance, even though the input matrix is further

reordered by the BlockSolve95 library. Notice that the triangular solve procedure is

responsible for the majority of PCG's computational overhead, and is also sensitive

to the initial ordering. For the overall PCG runtime, SAW has a slight advantage

over RCM and METIS; however, all three ordering schemes are about an order of

magnitude faster than ORIG.

Table 5.3

Runtimes (in seconds) for the triangular solve and the overall PCG using di�erent orderings

on the T3E.

ORIG METIS RCM SAW

P TriSolve PCG TriSolve PCG TriSolve PCG TriSolve PCG

8 14.08 51.87 9.96 13.17 5.98 8.61 4.86 6.87

16 8.01 32.96 3.87 5.32 2.86 4.23 2.74 4.02

32 5.98 8.83 1.80 2.56 1.74 2.58 1.31 1.99

64 6.12 8.30 0.87 1.28 0.78 1.25 0.81 1.17

The BlockSolve95 graph coloring and ILU(0) matrix factorization times are pre-

sented in Table 5.4. The initial ordering of the matrix dramatically a�ects both these

pre-processing steps, with SAW producing the best results. Notice from Tables 5.3

and 5.4 that the BlockSolve95 library shows scalable performance across all aspects

of the PCG computation when intelligent ordering schemes are used.

Table 5.4

Runtimes (in seconds) for BlockSolve95 graph coloring and matrix factorization using di�erent

orderings on the T3E.

ORIG METIS RCM SAW

P Color Factorize Color Factorize Color Factorize Color Factorize

8 116.68 339.94 48.41 107.20 37.87 82.53 33.93 75.31

16 75.63 283.71 20.00 46.90 19.01 40.02 17.05 37.22

32 46.96 128.30 10.01 23.26 9.59 20.19 8.76 19.79

64 28.08 82.63 5.01 11.41 5.39 10.48 4.64 9.57

To better understand the various partitioning and ordering algorithms, we have

built a simple performance model to predict the parallel runtime of AZ matvec mult.

First, using the T3E's hardware performance monitor, we collected the average num-

ber of cache misses per processor. This is reported in Table 5.5, and shows that SAW

has the fewest number of cache misses. In comparison, RCM, METIS, and ORIG

have between two and three times that number. Second, we gathered statistics on the

average communication volume and the maximum number of messages per processor,

both of which are also shown in Table 5.5. Notice that METIS transfers the least

amount of data, whereas RCM has the fewest number of messages.

In our model, we estimate the total parallel runtime T as

T = T

f

+ T

m

+ T

c

;



12 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

Table 5.5

Locality and communication statistics for AZ matvec mult. on the T3E.

Avg. Cache Misses (�10

6

) Avg. Comm. Vol. (in Mbytes) (Max. # Msgs)

P ORIG METIS RCM SAW ORIG METIS RCM SAW

8 3.684 3.034 3.749 2.004 3.228 (7) 0.011 (3) 0.031 (2) 0.049 (6)

16 2.007 1.330 1.905 0.971 2.364 (15) 0.011 (4) 0.032 (2) 0.036 (9)

32 1.060 0.658 1.017 0.507 1.492 (31) 0.009 (5) 0.032 (2) 0.030 (11)

64 0.601 0.358 0.515 0.290 0.828 (63) 0.008 (6) 0.032 (2) 0.023 (16)

where, T

f

; T

m

, and T

c

are the estimated per-processor times to perform 
oating-point

operations, to service the cache misses, and to communicate the x vector. Given

that a 
oating-point operation requires 1/900 microseconds and that each cache miss

latency is 0.08 microseconds (both from T3E product documentation), and assuming

that the MPI bandwidth and latency are 50 MB/second and 10 microseconds (both

from measurement), respectively, we can estimate the total runtime based on the

information in Table 5.5.

Table 5.6

Predicted runtimes (in seconds) for AZ matvec mult (SPMV) on the T3E. The fraction of the

total time spent servicing cache misses is also shown. In the column of total time T , the percentage

deviation from the measured time is given in parenthesis.

ORIG METIS RCM SAW

P T (dev.)

T

m

T

T (dev.)

T

m

T

T (dev.)

T

m

T

T (dev.)

T

m

T

8 0.367 (-35%) 0.80 0.250 (-47%) 0.97 0.308 (-19%) 0.97 0.169 (-1%) 0.95

16 0.212 (-35%) 0.76 0.110 (-58%) 0.96 0.157 (-19%) 0.97 0.082 (-5%) 0.94

32 0.117 (-41%) 0.72 0.055 (-37%) 0.96 0.084 (-12%) 0.97 0.043 (-2%) 0.94

64 0.067 (-44%) 0.72 0.030 (-46%) 0.96 0.043 (-5%) 0.96 0.025 (-12%) 0.93

Table 5.6 shows the predicted total time T and the ratio T

m

=T . T

f

is com-

paratively negligible (consistently less than 5% of T ) for all ordering strategies and

processor sets. T

c

is 18{27% of T for ORIG, but less than 3% of T for METIS, RCM,

and SAW. In parenthesis, we also give the percentage deviation of T from the mea-

sured experimental runtime (that are reported in Table 5.1). The maximum deviation

from the measured runtimes is �58%, which gives us a fair degree of con�dence in our

model. The results in Table 5.6 clearly indicate that servicing the cache misses is ex-

tremely expensive and requires more than 93% of the total time for METIS, RCM, and

SAW, and 72{80% for ORIG (which has relatively more communication). Although

SAW and RCM both incur more communication than METIS (in terms of the aver-

age message volume as shown in Table 5.5), their total runtimes are signi�cantly less.

This illustrates that for our combination of applications and architectures, improving

cache reuse can be more important than reducing interprocessor communication.

5.2. Origin2000 implementation. This version of the parallel CG code was

written using SGI's native pragma directives, which create IRIX threads. A rewrite

to OpenMP would require minimal programming e�ort but has not been done at this

time. Each processor is assigned an equal number of rows in the matrix. The parallel

SPMV and AXPY routines do not require explicit synchronizations, since they do not

contain concurrent writes. Global reduction operations are required for DOT and the

convergence tests. Two basic implementation approaches described below were taken.

The FLATMEM strategy naively assumes that the Origin2000 is a 
at shared-

memory machine. Arrays are not explicitly distributed among the processors, and



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 13

non-local data requests are handled by the cache coherent hardware. Alternatively,

the CC-NUMA strategy addresses the underlying distributed-memory nature of the

machine by performing an initial data distribution. Sections of the sparse matrix are

appropriately mapped onto the memories of their corresponding processors using the

default \�rst touch" data distribution policy of the Origin2000. The computational

kernels of both the FLATMEM and CC-NUMA implementations are identical, and

simpler to implement than the MPI version. Table 5.7 shows the SPMV and CG

runtimes using both approaches with the ORIG, RCM, and SAW orderings of the

mesh. We also present the runtime of CG using an MPI implementation on the

Origin2000 with the SAW ordering, as a basis for comparison.

Table 5.7

Runtimes (in seconds) of CG for di�erent orderings running in FLATMEM and CC-NUMA

modes on the Origin2000. The CG runtimes for an MPI implementation on the Origin2000 with

the SAW ordering is also given for comparison.

FLATMEM CC-NUMA MPI

P ORIG RCM SAW ORIG RCM SAW SAW

1 46.911 37.183 36.791 46.911 37.183 36.791

2 28.055 21.867 21.772 27.053 21.454 21.229 23.145

4 30.637 25.350 24.751 17.608 10.651 10.593 7.880

8 16.836 14.431 14.121 9.824 5.575 5.516 3.815

16 16.348 15.516 15.548 6.205 2.845 2.872 1.926

32 16.653 15.350 15.423 3.584 1.548 1.514 1.075

64 10.809 7.782 8.450 2.365 0.885 0.848 0.905

Observe that the CC-NUMA implementation shows signi�cant performance gains

over FLATMEM. This is expected since the Origin2000 is a distributed-memory sys-

tem, and therefore should be treated as such. As the number of processors increases,

the runtime di�erence between the two approaches becomes more dramatic, achiev-

ing an order of magnitude improvement when using more than 16 processors. Proper

data distribution becomes increasingly important for larger numbers of processors

since the corresponding communication overhead grows nonuniformly. Within the

CC-NUMA approach, the RCM and SAW ordering schemes dramatically reduce the

runtimes compared to ORIG, indicating that an intelligent ordering algorithm is nec-

essary to achieve good performance and scalability on distributed shared-memory

systems. There is little di�erence in parallel performance between RCM and SAW

because both ordering techniques reduce the number of secondary cache misses and

the non-local memory references of the processors. Recall however that on the T3E,

SAW was about twice as fast as RCM. This discrepancy in performance is probably

due to the larger cache size of the Origin2000 that reduces the bene�cial e�ects of

smart ordering.

The last two columns of Table 5.7 compare the CC-NUMA and MPI implementa-

tions of CG on the Origin2000 using the SAW ordering. Notice that the runtimes are

very similar, even though the programming methodologies of these two approaches

are quite di�erent. These results indicate that for this class of applications, it is possi-

ble to achieve message passing performance using shared-memory constructs, through

careful data ordering and distribution.

A shared-memory version of PCG is currently unavailable, and is not considered

in this paper. An e�cient implementation would require a CC-NUMA approach with

similar algorithmic designs to those used in the BlockSolve95 library, including graph

dependency analysis and matrix reordering. As we have shown in this section and



14 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

in previous work [16], a simpli�ed FLATMEM strategy produces poor results for

irregularly structured problems, and would not be suitable for PCG.

5.3. SP3 implementation. For the hybrid implementation of the CG algo-

rithm on the IBM SP3, we started with the Aztec MPI library [10] and incremen-

tally added OpenMP parallelization directives. Through the use of pro�ling, the key

loop nests responsible for signi�cant portions of the overall execution were identi�ed.

A naive parallelization of all loops can be counterproductive since the overhead of

OpenMP can exceed the savings in execution time. Some reorganization of the code,

including the use of temporary variables, was necessary to preserve correctness. In

all, eight Aztec loops were parallelized with OpenMP directives, the most important

being the SPMV routine. To achieve the best possible OpenMP performance, dense

vector operations were performed with the threaded vendor-optimized BLAS from

ESSL.

Table 5.8

Runtimes (in seconds) of CG using di�erent orderings on the SP3.

P Nodes Tasks Threads ORIG METIS RCM SAW METIS+SAW

4 1 1 4 6.470 3.561 3.244

1 2 2 6.848 4.968 3.294 3.017 2.990

1 4 1 7.262 3.994 3.192 2.919 2.905

2 1 2 6.928 4.804 3.255 2.962 2.921

2 2 1 7.656 3.881 3.136 2.829 2.805

4 1 1 7.278 3.871 3.108 2.803 2.772

8 1 1 8 4.388 2.162 1.998

1 2 4 4.995 2.929 1.992 1.879 1.841

1 4 2 6.038 2.426 1.930 1.812 1.781

2 1 4 4.858 2.768 1.858 1.716 1.675

2 2 2 5.955 2.234 1.759 1.620 1.589

2 4 1 6.141 1.891 1.758 1.595 1.575

4 1 2 5.301 2.123 1.733 1.568 1.530

4 2 1 6.044 1.806 1.687 1.506 1.494

8 1 1 5.550 1.774 1.687 1.511 1.453

16 2 1 8 3.375 1.926 1.217 1.139 1.118

2 2 4 4.125 1.366 1.071 1.018 0.992

2 4 2 4.782 1.472 1.084 1.019 1.006

4 1 4 3.684 1.261 0.987 0.925 0.897

4 2 2 4.527 1.078 0.985 0.894 0.884

4 4 1 5.186 0.965 0.986 0.914 0.902

8 1 2 4.153 1.057 0.960 0.892 0.847

8 2 1 4.539 0.905 0.926 0.842 0.828

32 4 1 8 2.973 0.870 0.651 0.678 0.617

4 2 4 3.608 0.709 0.618 0.593 0.581

4 4 2 4.067 0.723 1.120 0.680 0.649

8 1 4 3.325 0.628 0.590 0.529 0.506

8 2 2 3.801 0.587 0.592 0.560 0.545

8 4 1 4.267 0.586 0.607 0.580 0.569

64 8 1 8 2.992 0.473 0.391 0.390 0.372

8 2 4 3.557 0.452 0.690 0.442 0.407

8 4 2 3.963 0.466 0.798 0.495 0.460

Table 5.8 shows the results of the hybrid CG implementation on the SP3, for

varying numbers of SMP nodes, MPI tasks, and OpenMP threads. In addition to

the ORIG, METIS, RCM, and SAW orderings, we present a new hybrid partition-

ing/linearization scheme comprised of METIS+SAW. Since METIS [13] is well-suited

for minimizing interprocessor communication and SAW [8] has been demonstrated



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 15

to enhance cache locality, combining these two approaches is a potentially promising

strategy for hybrid architectures. First, the graph is partitioned into the appropriate

number of MPI tasks using METIS. Next, a SAW linearization is applied to each in-

dividual subdomain in parallel. Thus, when multiple OpenMP threads process their

assigned submatrix, the SAW reordering should improve each processor's cache per-

formance and reduce false sharing.

Notice that when there is only one SMP node and one MPI task (as in f1,1,4g

and f1,1,8g)

1

, the CG code is e�ectively parallelized using only OpenMP; thus, tim-

ings are not presented for the corresponding METIS and METIS+SAW entries. The

performance trends are very similar to the CC-NUMA results in x5.2 where the SAW

ordering gave the best runtimes. Similarly, when the number of OpenMP threads is

one, the parallelization is purely MPI based. Recall from x4.3 that due to limitations

in the current switch architecture of the SDSC's SP3, the maximum number of MPI

tasks is limited to four on each SMP, and hybrid programming is required to use all

the available processors.

The performance of the ordering schemes averaged across all combinations of

nodes, tasks, and threads from best to worst are: METIS+SAW, SAW, RCM, METIS,

and ORIG. The METIS+SAW strategy consistently outperforms all others; however

as was shown in x5.1, cache behavior is signi�cantly more important than interproces-

sor communication for our application. As a result, there is no signi�cant performance

di�erence between the hybrid METIS+SAW strategy and the pure SAW linearization.

Nonetheless, we expect algorithms with higher communication requirements to bene-

�t from this dual partitioning/ordering approach. This will be the subject of future

research. Overall, these results show that intelligent ordering schemes are extremely

important for e�cient sparse matrix computations regardless of whether the program-

ming paradigm is OpenMP, MPI, or a combination of both.

To compare hybrid versus pure MPI performance, �rst examine the METIS+SAW

column since it gives the best CG runtimes. Each processor set shows di�ering results.

For example, on 16 processors, the fastest CG implementation is for f8,2,1g, meaning

no OpenMP parallelization is triggered. However, on 32 processors, f8,1,4g is the

fastest, outperforming f8,4,1g. Finally, on 64 processors, using the maximum number

of OpenMP threads, as in f8,1,8g, gives the best results. Within each processor set,

varying the number of tasks and threads does not result in a signi�cant performance

di�erence. Overall, the hybrid implementation o�ers no noticeable advantage. This

is true for the other ordering schemes as well, as is evident from Table 5.8. However,

since the hybrid paradigm increases programming complexity and adversely a�ects

portability, we conclude that for running iterative sparse solvers on clusters of SMPs,

a pure MPI implementation is a more e�ective strategy. Similar conclusions have

been drawn in recent work by other researchers [3, 9].

For the same reasons as mentioned in x5.2, a hybrid PCG implementation is not

considered in this paper, and will be the subject of future work.

The results in x5.1, 5.2, and here, show that if the underlying computation un-

dergoes dynamic mesh adaptation, a new reordering would be required each time the

mesh evolved for e�cient parallel performance. In addition, once an ordering was

computed for the newly-adapted mesh, a remapping phase would be necessary to

appropriately redistribute the corresponding submatrix onto the processors. These

processes preserve the computational load balance and maintain good cache locality

for adaptive applications. Unfortunately, a signi�cant overhead is generally associated

1

The tuple fx; y; zg denotes fSMP nodes, MPI tasks, OpenMP threadsg.



16 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

with these rebalancing phases [15, 16, 22]. The CC-NUMA and MPI+OpenMP strate-

gies would thus be comparable to an MPI implementation, requiring similar amounts

of programming e�ort and rebalancing overheads. The major di�erence would be the

use of a shared address space (global on an Origin2000, local within a node on a SP3)

instead of explicit message-passing calls for interprocessor communication.

5.4. MTA implementation. The multithreaded implementation of CG on the

Cray MTA is straightforward, requiring only compiler directives. Since the data

structures are dynamically allocated pointers, special pragma assertions were used to

indicate that there are no loop-carried dependencies. The compiler was thus able to

automatically parallelize the appropriate loop segments. Load balancing is implicitly

handled by the operating system which dynamically assigns rows to threads. The

reduction operations for DOT and the convergence test were handled automatically

as well. Otherwise, special synchronization constructs were not required since there

are no other possible race conditions in the multithreaded CG. It is important to

highlight that no special ordering was necessary to achieve good parallel performance.

Results using 60 streams per processor are presented in Table 5.9. Both CG and

the underlying SPMV achieve high scalability of over 90% using the ORIG ordering.

This indicates that there is enough thread and instruction level parallelism in CG to

tolerate the relatively high overhead of memory access. There is a slight drop in perfor-

mance between four and eight processors. As we increase the number of processors,

the number of active threads increases proportionately while the runtimes become

very small. As a result, a greater percentage of the overall time is spent on thread

management, causing a decrease in e�ciency. Notice that the SAW ordering does

not signi�cantly change the performance of CG on this cache-less architecture. Thus,

the programming and runtime overheads associated with partitioning/linearization

schemes are not required on this platform. Furthermore, reordering and remapping

are not required even if the underlying mesh undergoes adaptation. This saves both

the computational resources and the programming overhead of rebalancing the mesh

in an adaptive environment. Thus, the MTA has a distinct advantage over distributed-

memory systems for this class of applications.

Table 5.9

Runtimes (in seconds) for the original and SAW orderings on the MTA.

ORIG SAW

P SPMV CG CG

1 0.378 9.86 9.74

2 0.189 5.02 5.01

4 0.095 2.53 2.64

8 0.051 1.35 1.36

For the MTA implementation of PCG, we developed a multithreaded version of

the lower and upper triangular solves (see Fig. 2.3). Matrix factorization times are not

reported since it is performed only once outside the inner loop. Our multithreaded

strategy uses low-level locks to e�ectively perform an on-the-
y dependency analysis.

Recall that to compute the lower triangular solve Lx = b, the solution of x

i

depends

on all x

j

, j < i, unless l

ij

= 0. First, synchronization locks are applied to all

x

j

, j = 1; 2; : : : ; n, to guarantee correct dependency behavior. Threads are then

dynamically assigned to solve for each x

i

. If a given x

i

has a dependency on x

j

which has not yet been computed, the attempt to access the blocked memory address

of x

j

will cause the thread responsible for processing x

i

to be temporarily put to



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 17

sleep. Once a thread successfully solves for x

j

, the synchronization lock on that

variable is released, causing the runtime system to wake all blocked threads waiting

to access the memory address of x

j

. Subsequent attempts to access that variable will

no longer cause active threads to become blocked. The lightweight synchronization

of the MTA allows locks to be e�ectively used at such a �ne granularity. Notice

that the multithreaded version of triangular solve is dramatically less complex than

the BlockSolve95 implementation described in x5.1, which required advanced graph

dependency analysis and matrix reordering to achieve high parallelism.

Table 5.10

Runtimes (in seconds) for the triangular solve and the overall PCG on the MTA.

P TriSolve PCG

1 71.98 80.34

2 45.74 50.02

4 26.94 29.18

8 16.04 17.29

Table 5.10 presents the performance of PCG with the ORIG ordering on the

MTA, again using 60 streams. Observe that the triangular solve is responsible for

most of the computational overhead, and achieved a speedup of approximately 4.5X

on eight processors. This limited scalability is due to the lack of available thread level

parallelism in our dynamic dependency scheme. A large fraction of the computational

threads were blocked at any given time, preventing a full saturation of the MTA

processors. Subsequent attempts to optimize the multithreaded code by increasing

the number of streams and using more sophisticated orderings strategies caused the

MTA to crash due to limitations in its current system software

2

. We plan to revisit

the multithreaded PCG once a more mature runtime system becomes available on the

MTA. It would also be interesting to continue our experiments as more processors are

added to the system.

6. Summary and conclusions. In this paper, we examined the performance

of and the programming e�ort required for the Conjugate Gradient (CG) sparse iter-

ative solver on four leading parallel platforms using their corresponding programming

approaches: message passing, shared-memory directives, hybrid programming, and

multithreading.

Parallel programming with message passing is the most common and mature ap-

proach for high-performance systems. The MPI version of CG on the Cray T3E used

the Aztec [10] library. We compared the parallel performance after ordering the sparse

matrix using reverse Cuthill-McKee (RCM) [4], self-avoiding walk (SAW) [8], and the

METIS partitioner [13]. Results showed that all three schemes greatly improve the

parallel performance of CG compared to the naive natural ordering. In addition,

we demonstrated that traditional graph partitioners, which focus on minimizing edge

cuts, are not necessarily the best tools for partitioning sparse matrices on multipro-

cessor systems. Using RCM or SAW as an ordering/partitioning strategy results in

a faster CG than METIS, due to better cache reuse. A performance model was also

presented which predicts the expected sparse matrix-vector multiply (SPMV) runtime

as a function of both cache misses and communication overhead. Within each CG

iteration, the SPMV is usually the most expensive operation.

2

We were requested by the MTA system administrator at SDSC to postpone running our PCG

code until the system software error could be isolated and corrected.



18 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

For ill-conditioned linear systems, it is often necessary to use a preconditioning

technique. We presented MPI results for ILU(0) preconditioned CG (PCG) using the

BlockSolve95 [12] library. Unlike CG, the runtime of the PCG algorithm is domi-

nated by the triangular solves which are inherently less amenable to parallelization

than SPMV. BlockSolve95 graph colors and reorders the input matrix to achieve high

parallelism; however, we found that the initial ordering of the input matrix dramati-

cally a�ected PCG's performance. Overall, the SAW linearization resulted in the best

runtimes for all components of PCG, including graph coloring and factorization.

Using a shared-memory system can greatly simplify the programming task com-

pared to message passing. A shared-memory implementation of CG on the Origin2000

showed that ordering algorithms dramatically improve parallel performance. This is

because the Origin2000 is a distributed-memory architecture, so proper data distri-

bution is required even when programming in shared-memory mode. A direct com-

parison with an MPI implementation indicated that it is possible to achieve message-

passing performance using shared-memory constructs for this class of applications

through careful data ordering and distribution.

A recently proposed hybrid programming paradigm combines two layers of par-

allelism, by implementing OpenMP shared-memory codes within an SMP, while us-

ing MPI among the SMP clusters. We developed the CG algorithm on the IBM

SP3, by starting with the Aztec [10] MPI library and incrementally adding OpenMP

parallelization directives. A new hybrid partitioning/linearization scheme comprised

of METIS+SAW was presented, and consistently outperformed the other ordering

schemes. However, since cache behavior is signi�cantly more important than inter-

processor communication for our application, there was not a signi�cant performance

di�erence between the METIS+SAW strategy and the pure SAW linearization. Com-

paring hybrid (MPI+OpenMP) versus pure MPI implementations of CG, we found

no signi�cant performance di�erences between the two schemes. However, since the

hybrid paradigm increases programming complexity and adversely a�ects portabil-

ity, we conclude that for running iterative solvers on clusters of SMPs, a pure MPI

implementation is a more e�ective strategy.

Multithreading has received considerable attention over the years as a promising

way to hide memory latency in high-performance computers, while providing access

to a large and uniform shared memory. We presented results on the multithreaded

architecture of the Cray MTA. The CG implementation was straightforward, requir-

ing only compiler directives. Results showed that special ordering and/or partitioning

schemes are not required on the MTA to obtain high e�ciency and scalability. Fur-

thermore, reordering and remapping are not required even if the underlying mesh

undergoes adaptation, giving the MTA a distinct advantage over distributed-memory

systems for adaptive applications.

Finally, a multithreaded version of the PCG algorithm was also developed. Here,

the triangular solve uses low-level locks to e�ectively perform a graph dependency

analysis at runtime. This implementation was dramatically less complex than the

BlockSolve95's PCG, which required advanced graph dependency analysis and matrix

reordering. However, only limited scalability was achieved due to the lack of available

thread level parallelism in our dynamic dependency scheme, which prevented a full

saturation of the MTA processors. In future, we plan to revisit the MTA as a more

mature runtime environment becomes available and as more processors are added to

the system.



EFFECTS OF ORDERING STRATEGIES AND PROGRAMMING PARADIGMS 19

Acknowledgments. The work of the �rst three authors was supported by the

Director, O�ce of Computational and Technology Research, Division of Mathemati-

cal, Information, and Computational Sciences of the U.S. Department of Energy under

contract number DE-AC03-76SF00098.

REFERENCES

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.

Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems:

Building Blocks for the Iterative Methods, SIAM, Philadelphia, PA, 1994.

[2] D. A. Burgess and M. B. Giles, Renumbering unstructured grids to improve the performance

of codes on hierarchical memory machines, Advances in Engineering Software, 28 (1997),

pp. 189{201.

[3] F. Cappello and D. Etiemble, MPI versus MPI+OpenMP on the IBM SP for the NAS

benchmarks, in Proc. Supercomputing'00, Dallas, TX, 2000.

[4] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proc.

ACM National Conference, 1969, pp. 157{192.

[5] C. Fiduccia and R. Mattheyses, A linear-time heuristic for improving network partitions,

in Proc. 19th ACM/IEEE Design Automation Conference, 1982, pp. 175{181.

[6] A. George, Computer implementation of the �nite element method, Stanford University Tech-

nical Report STAN-CS-208, Stanford, CA, 1971.

[7] M. Griebel and G. Zumbusch, Hash-storage techniques for adaptive multilevel solvers and

their domain decomposition parallelization, AMS Contemporary Mathematics Series, 218

(1998), pp. 279{286.

[8] G. Heber, R. Biswas, and G. R. Gao, Self-avoiding walks over adaptive unstructured grids,

Concurrency: Practice and Experience, 12 (2000), pp. 85{109.

[9] D. S. Henty, Performance of hybrid message-passing and shared-memory parallelism for dis-

crete element modeling, in Proc. Supercomputing'00, Dallas, TX, 2000.

[10] S. A. Hutchinson, L. V. Prevost, J. N. Shadid, and R. S. Tuminaro, Aztec User's Guide,

Sandia National Laboratories Technical Report SAND95-1559, Albuquerque, NM, 1998.

[11] M. T. Jones and P. E. Plassmann, A parallel graph coloring heuristic, SIAM J. on Sci.

Comput., 14 (1993), pp. 654{669.

[12] , BlockSolve95 User's Manual: Scalable Library Software for the Parallel Solution

of Sparse Linear Systems, Argonne National Laboratory Technical Report ANL-95/48,

Chicago, IL, 1995.

[13] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular

graphs, SIAM J. Sci. Statist. Comput., 20 (1998), pp. 359{392.

[14] R. L

�

ohner, Renumbering strategies for unstructured-grid solvers operating on shared-memory,

cache-based parallel machines, Computer Methods in Applied Mechanics and Engineering,

163 (1998), pp. 95{109.

[15] L. Oliker and R. Biswas, PLUM: Parallel load balancing for adaptive unstructured meshes,

J. Parallel and Distributed Computing, 52 (1998), pp. 150{177.

[16] , Parallelization of a dynamic unstructured algorithm using three leading programming

paradigms, IEEE Trans. on Parallel and Distributed Systems, 11 (2000), pp. 931{940.

[17] C.-W. Ou, S. Ranka, and G. Fox, Fast and parallel mapping algorithms for irregular prob-

lems, J. of Supercomputing, 10 (1995), pp. 119{140.

[18] M. Parashar and J. C. Browne, On partitioning dynamic adaptive grid hierarchies, in Proc.

29th Hawaii Intl. Conf. on System Sciences, Wailea, HI, 1996, pp. 604{613.

[19] J. R. Pilkington and S. B. Baden, Dynamic partitioning of non-uniform structured work-

loads with space-�lling curves, IEEE Trans. on Parallel and Distributed Systems, 7 (1996),

pp. 288{300.

[20] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,

MA, 1996.

[21] J. Salmon and M. S. Warren, Parallel, out-of-core methods for fast evaluation of long-range

interactions, in Proc. 8th SIAM Conf. on Parallel Processing for Scienti�c Computing,

Minneapolis, MN, 1997.

[22] H. Shan, J. P. Singh, L. Oliker, and R. Biswas, A comparison of three programming models

for adaptive applications on the Origin2000, in Proc. Supercomputing'00, Dallas, TX,

2000.

[23] J. R. Shewchuk, Triangle: Engineering a 2d quality mesh generator and Delaunay triangula-



20 L. OLIKER, X. LI, P. HUSBANDS, AND R. BISWAS

tor, in Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes

in Computer Science, Vol. 1148, Springer-Verlag, Heidelberg, Germany, 1996, pp. 203{222.


